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cellulose solvents: a review
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Abstract

Non-food lignocellulosic biomass is the most abundant renewable bioresource as a collectable, transportable, and storable
chemical energy that is far from fully utilized. The goal of biomass pretreatment is to improve the enzymatic digestibility of
pretreated lignocellulosic biomass. Many substrate factors, such as substrate accessibility, lignin content, particle size and so
on, contribute to its recalcitrance. Cellulose accessibility to hydrolytic enzymes is believed to be the most important substrate
characteristic limiting enzymatic hydrolysis. Cellulose solvents effectively break linkages among cellulose, hemicellulose and
lignin, and also dissolve highly-ordered hydrogen bonds in cellulose fibers accompanied with great increases in substrate
accessibility. Here the history and recent advances in cellulose solvent-based biomass pretreatment are reviewed and
perspectives provided for addressing remaining challenges. The use of cellulose solvents, new and existing, provides
opportunities for emerging biorefineries to produce a few precursors (e.g. monosaccharides, oligosaccharides, and lignin) for
the production of low-value biofuels and value-added biochemicals.
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INTRODUCTION

The production of biofuels and value-added biochemicals
from evenly-distributed non-food lignocellulosic biomass would
decrease net greenhouse gas emissions by replacing the use of
fossil fuels and would bring benefits to rural economy, national
energy security, and the balance of trade.!? Additionally, it would
create alarge number of new biomanufacturing jobs, which cannot
be outsourced, because of the high transportation costs for lower
energy density biomass feedstocks compared with crude oil, coal,
and corn kernels.'3

Lignocellulosic biomass, the most abundant renewable
bioresource, is mainly composed of three major biopolymeric
components: cellulose, hemicellulose, and lignin. The interwoven
linkages among biopolymers result in a natural recalcitrant
composite, and thisis the largest technical and economic hurdle to
cost-effectively releasing fermentable sugars for biorefineries.'*
Two major routes convert lignocellulose into biofuels and
bio-products: thermochemical and biochemical conversions.
Compared with the biochemical process, thermochemical
conversion has fewer processing steps and a shorter processing
time but requires more energy input, i.e. lower energy efficiency.
Biochemical conversion features potentially high product yields,
low energy consumption, and modest reaction conditions. Both
thermochemical and biochemical processes are being extensively
studied. Clearly, each process will have its specific applications by
considering properties and prices of diverse biomass feedstocks
and products that we want to produce. In this review, we will
narrow down biochemical conversion by using cellulose solvents.

Biological saccharification of lignocellulosic biomass usually
involves two sequential steps: (i) pretreatment, which increases
substrate reactivity for hydrolytic enzymes; and (ii) enzymatic
hydrolysis, which releases soluble sugars by hydrolytic enzymes.
Pretreatment usually accounts for up to 40% of the total

processing cost of bioconversion of lignocellulosic biomass.
Moreover, pretreatment influences downstream processing costs
in detoxification, enzymatic hydrolysis rate, and enzyme use, as
well as product concentration and purification.® Consequently,
an efficient pretreatment technology that affords rapid and high-
digestion enzymatic saccharification is of great importance for
economically sustainable biorefineries.

In spite of intensive efforts to develop low-cost commercial-
available fungal cellulase, cellulase remains costly for second-
generation biorefineries. The study in 2012 by the Joint BioEnergy
Institute suggests that the cost contribution of current fungal
cellulase to cellulosic ethanol was at least $0.68 per gallon or
potentially higher.”® One of the key reasons for high enzyme
cost per gallon of ethanol is high ratios of enzyme to sub-
strate, e.g. approximately 20 mg protein needed per gram of
cellulosic materials, at least one order of magnitude higher
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than that for starch hydrolysis.®'® To drastically decrease cellu-
lase use to 2-5 mg protein per gram of glucan, mass-specific
activity of cellulase can be enhanced by several approaches:
improvement in individual components by directed evolution'"'2
and rational design,'® reconstitution of non-complexed cellulase
cocktails,'™> construction of complexed cellulases (called syn-
thetic cellulosomes),'~ % and cellulosomes/cellulases displayed
on the surface of microorganisms.'”2%2! However, hydrolysis per-
formances of various cellulolytic systems fromindividual cellulases,
non-complexed cellulase mixtures, complexed cellulases (cellulo-
somes), and cell-surface cellulosomes are strongly associated with
substrate reactivity of pretreated biomass,'>17182223 resulting
in great challenges in finding the best match between pretreat-
ments and available/developing cellulolytic systems. Alternatively,
decreasing mass ratio of cellulase to substrate could be achieved
by increasing substrate reactivity by using cellulose solvent-based
biomass pretreatment so that current fungal cellulase system can
work more efficiently.

Here we briefly review the key root cause of biomass
recalcitrance - low cellulose accessibility to cellulase (CAC) and its
influence on enzymatic hydrolysis mechanisms, as well as recent
advancesin cellulose solvent-based biomass pretreatments, which
greatly increase cellulose accessibility more than conventional
biomass pretreatments, such as dilute acid pretreatment, steam
explosion, hot water.

BIOMASS RECALCITRANCE IS MAINLY DUE
TO LIMITED SUBSTRATE ACCESSIBILITY
TO CELLULASE

The root causes of biomass recalcitrance is attributed to a number
of factors, such as substrate accessibility, cellulose degree of
polymerization (DP), crystallinity, particle size, porosity, as well as
hemicellulose and lignin contents.?*~2¢ Among these factors,
substrate accessibility has shown to be the most important
substrate characteristic impacting efficient enzymatic cellulose
hydrolysis at low enzyme loadings.?” ~32

Classic surface accessibility methods can be used for
measuring cellulose accessibility, such as nitrogen adsorption-
based Brunauer-Emmett-Teller (BET), 373> size exclusion
chromatography,®® vapor adsorption,?” dye adsorption,3® small
angle X-ray scattering (SAXS).3>3? However, they are not perfectly
applied to enzymatic cellulose hydrolysis process because (i) enzy-
matic cellulose hydrolysis occurs on the surface of hydrated solid
matter in the aqueous phase (i.e. dried cellulosic samples have
completely different supramolecular structures from hydrated
samples);3"3340 (ii) cellulases are large-size molecules with a size
of approximately 5 nm, much larger than nitrogen and water;?® =31
and (iii) cellulase is preferentially adsorbed on the 110 face of
cellulose fibers that cellulase can hydrolyze.*! Small-size molecule
adsorption methods, such as BET and vapor, could result in over-
estimation of CAC.?° Cellulase-size exclusion chromatography can
neither differentiate the effective cellulose surface for adsorption
and hydrolysis nor account for the external surface3'3¢42 but this
method could provide an approximate estimate of CAC.

A quantitative assay for determining CAC has been established
based on adsorption of a non-hydrolytic fusion protein (TGC)
containing a family 3 cellulose-binding module (CBM) and a
green fluorescence protein (GFP) (Fig. 1).2° This new approach
could assess substrate accessibility related to enzymatic cellulose
hydrolysis more accurately than traditional methods, such as size

(A) TGC fusion protein
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(B) TGC adsorption on cellulose
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Figure 1. Schematic diagram of thioredoxin-GFP-CBM fusion protein (A).
The TGC protein is similar in size to T. reesei EG1. lllustration of TGC (B1), TGC
in cellulose solution (B2), and cellulose solution (B3) under UV excitation.
TGC binds specifically on cellulose surface through CBM and fluoresces
under UV excitation. This figure is modified from reference 29.

exclusion, Simon’s staining technique,*® and small angle X-ray
scattering.?’ The TGC protein is similar in size to Trichoderma
reesei EG1 (Fig. 1(A)). Under UV excitation, TGC protein fluoresces
a green color (Fig. 1(B1)) while there is no color in the cellulose
solution (Fig. 1(B3)). After TGC was mixed with a cellulose solution,
TGC can bind on the surface of cellulose through its CBM,
suggesting that TGC can specifically bind on cellulose (Fig. 1(B2)).
TGC adsorption obeys the Langmuir isotherm and the CAC value
can be calculated based on the maximum binding capacity of
TGC in terms of m? g~! of cellulose, where a molecule of TGC
is estimated to occupy an area of 21 cellobiose lattice.?® Zhu
et al.** further applied this protein to pretreated biomass by
quantitative differentiation of CAC and total substrate accessibility
to cellulase (TSAC) (Fig. 2(A)). Lignin fraction can be blocked
by using excess bovine serum albumin before TGC adsorption
(Fig. 2(B)). Non-cellulose accessibility to cellulase (NCAC) can be
calculated by taking the difference between TSAC and CAC.

Zhu and coworkers3' compared cellulose accessibility
measurements based on different-size solute exclusion and
adsorption of cellulase and TGC on a set of hornified lignocellulosic
substrates derived by drying the never dried pretreated sample.
They found that the substrate enzymatic digestibilities of the
hornified substrates were proportional to the measured cellulose
accessibilities. More than 90% of the digestibility was contributed
by the accessible pore surfaces of the hornified substrates,
suggesting that the substrate external surface plays a minor role
contributing to cellulose accessibility and digestibility >’

Although the belief that removing lignin can increase cellulose
hydrolysis was widely accepted by most biomass pretreatment
scientists, the results of Rollin et al. present a bigger picture for
the relationship among cellulose accessibility, lignin removal, and
cellulose digestibility?® (Fig. 3). For conventional biomass pretreat-
ments, such as dilute acid and steam explosion, which modestly
increase substrate accessibility to cellulase mainly via the removal
of hemicelluloses,33#>~48 removing lignin clearly increased enzy-
matic hydrolysis digestibility (Fig. 3). However, when substrate
accessibility is increased greatly by using cellulose solvents, such as
cellulose solvent and organic solvent lignocellulose fractionation
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Figure 2. lllustrations of adsorption mechanism of TGC. To determine total
substrate accessibility to cellulase (TSAC), TGC equilibration is conducted
without BSA (A). When BSA blocking is used prior to TGC equilibration,
cellulose accessibility to cellulase (CAC) can be determined (B). Cellulose

(110) planes susceptible to cellulase binding are highlighted in red. This
figure is reprinted from reference 28.

fansabla weanlo %

Figure 3. Digestibility as a function of delignification and CAC. This figure
is reprinted from reference 28.

(COSLIF), removing lignin has a limited benefit to enhance the
digestibility of high-accessibility pretreated biomass (Fig. 3). The
above result clearly suggests thatincreasing substrate accessibility
may be more important than removing lignin. The bottom line is
whether removing lignin is important or not depends on whether
we can increase substrate accessibility significantly.

The study of enzymatic hydrolysis for low-accessibility micro-
crystalline cellulose (Avicel) and high-accessibility regenerated
amorphous cellulose (RAC) clearly presents different hydroly-
sis mechanisms for a non-complexed cellulase mixture (Fig. 4).
Avicel is a typical heterogeneous substrate; its glucan chains are

aligned in the same direction, and highly ordered hydrogen bonds
among adjacent sugar chains result in low surface accessibility
to cellulose.’ In contrast, RAC is a homogeneous amorphous
cellulose, whose highly ordered hydrogen bonds in the cellulose
chains are disrupted through cellulose dissolution in concentrated
phosphoric acid and regeneration in water,*%4° its surface area is
at least 20 times higher than that of Avicel based on the adsorp-
tion of TGC.">>% Avicel hydrolysis by the cellulase mixture was
a typical peeling or layer-by-layer hydrolysis process (Fig. 4(A)).
The ends of 8-glucosidic bond on the surface of Avicel generated
by adsorbed endoglucanase cannot be hydrolyzed by exoglu-
canase until endoglucanase moves elsewhere and exoglucanase
moved to the reducing ends. For low-accessibility Avicel, the ends
of cellulose chains are limited to exoglucanase.'®32°152 High-
accessibility RAC allows most endoglucanase to efficiently and
rapidly hydrolyze substrate, resulting in a rapid decrease in DP
at the beginning when limited liquefaction occurs® (Fig. 4(B)).
As a result, the reducing and non-reducing ends of RAC are in
excess to exoglucanase. Therefore, each cellulase component in
the non-complexed cellulase mixture works independently so that
synergy between exoglucanase and endoglucanase is not vital to
complete hydrolysis of RAC.!>'8

In a word, effectively increasing biomass accessibility via
cellulose/biomass dissolution in cellulose solvents very effectively
overcomes biomass recalcitrance to hydrolytic enzymes at
low enzyme loadings. Therefore, the use of cellulose solvents
from biomass pretreatment could be very promising in future
biorefineries.

CELLULOSE SOLVENTS
AND THEIR APPLICATIONS IN BIOMASS
SACCHARIFICATION

Cellulose solvent-based lignocellulose pretreatments have gained
more and more attention because they can break biomass
recalcitrant structure by increasing cellulose accessibility more
effectively than traditional biomass pretreatments (e.g. steam
explosion,”* AFEX,?? soakingin aqueousammonia (SAA),%%>> dilute
acid pretreatment,* organosolv®®). As a result, hydrolysis rate and
digestibility of pretreated biomass are increased and enzyme use

decreased.”” ~>° Also, cellulose solvent-based pretreatments may
be regarded as a biomass-independent pretreatment.>® As shown
in Fig. 5, thefibril structure of switchgrass was completed disrupted
by concentrated phosphoricacid and anionicliquid [C;mim][OAc].

Crystallinity index (Crl) of switchgrass before and after cellulose
solvent-based pretreatment can be determined by X-ray diffraction
(XRD) and cross polarization/magic angle spinning (CP/MAS) '3C
nuclear magnetic resonance (NMR).260 Crl values vary greatly
depending on measurement techniques, calculation approaches,
and sample drying conditions, suggesting that the effects of
Crl data obtained from dried samples on enzymatic hydrolysis
of hydrated cellulosic materials should be interpreted with
caution.*® The Crl values of COSLIF- and [C;mim][OAc]-pretreated
swichgrass determined by XRD are 3.2 and 2.6%, respectively,
compared with 67.0% of non-pretreated swichgrass (Table 3).
The 20.9- and 25.8-fold reductions in Crl values of COSLIF-
and [Comim][OAc]-pretreated switchgrass are accompanied with
significant enhancement of enzymatic glucan digestibility (> 90%)
in 24 h (data not shown). Here we would like to urge that decreasing
Crl of biomass is not a root cause for enhanced digestibility and
this inverse correlation between Crl and digestibility is sometimes
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Figure 4. Profiles of enzymatic hydrolysis of Avicel (A) and regenerated amorphous cellulose (RAC) (B). Enzymatic cellulose hydrolysis was carried out at
50°C using a 50 mmol L™ citric acid buffer (pH 4.8) in a rotary shaker at 200 rpm. For Avicel, hydrolysis was carried out at 10 g L™ Avicel with an enzyme
loading of 15 FPU Spezyme cellulose g! Avicel, supplemented with 60 IU cellobiase g Avicel. For RAC, hydrolysis was carried out at 5 g L' RAC with an

enzyme loading of 0.5 FPU g”' RAC. This figure is modified from reference 53.

Figure 5. SEM micrographs of intact switchgrass (A), COSLIF-pretreated switchgrass (B), and [C;mim][OAc]-pretreated switchgrass (C). This figure is

modified from references 40 and 76.

due to a coincident relation between substrate accessibility and
Crl. A good exception is that ammonia-pretreated biomass has
both increases in Crl value and enzymatic digestibility.265

A history of applications of cellulose solvents in biomass
hydrolysis and pretreatment may be categorized into three
generations:

1 First generation: one step biomass dissolution and hydrolysis.

2 Second generation: biomass dissolution followed by enzymatic
hydrolysis.

3 Third generation: lignocellulose fractionation.

First generation

Concentrated acids (e.g. sulfuric acid, hydrochloric acid, and
nitric acid) have long been known as good cellulose solvents
as well as hydrolysis agents (Pereira et al., 1988).5% Their hydrolysis
ability associated with sugar degradation could be minimized
by decreasing cellulose dissolution temperature. High cellulose
conversion yields are usually reported, such as the Bergius
process,%? but not for hemicelluloses.®®> Another advantage of
using concentrated acids is that it is biomass-independent, and
can be applied to a wide range of feedstocks (herbaceous,
hardwood, and softwood)3> Currently several companies, such as
BlueFire Renewables (USA) and Virdia (USA), employ concentrated
acid-based biomass saccharification technologies. However, these
approaches have three major technical and economic hurdles:
(i) soluble acid/soluble sugar separation, (ii) acid recovery, and
(iii) acid re-concentration (Table 1).%% To address such challenges,
biomass pretreatment followed by enzymatic hydrolysis becomes
an alternative approach, because it retains most cellulose as a
solid substrate so that solid substrate is easily separated from the

cellulose solvent.5> Limited hydrolysis in cellulose solvents can
avoid the degradation of labile sugars (e.g. hemicellulose)®® but
requires costly cellulase input (Table 1).

Second generation

Overcoming lignocellulose recalcitrance by using non-hydrolytic
cellulose solvents followed by enzymatic hydrolysis was first pro-
posed by Ladisch and Tsao in 1978.57 After searching fora number
of cellulose solvents, Cadoxen, an alkali solution of CdO in aqueous
ethylenediamine, was found to dissolve dry biomass. The resulting
cellulose regenerated from pure cellulose can be hydrolyzed
quickly in high yields by cellulose,®” but glucan digestibility was
modest for pretreated biomass. Because Cadoxen is corrosive and
toxic, a trace amount of the solvent in the pretreated biomass
could inhibit subsequent hydrolysis and fermentation steps.
Consequently, this technology’s world patent was given up by
their inventors long before its patent expiration date.

Third generation: lignocellulose fractionation

Considering a very narrow margin between sugars (e.qg.
approximately 30 US cents per kg of sugars) and feedstocks
(e.g. $60-100 per ton of biomass, containing approximately
600 kg of sugars), it is economically important to fractionate
natural composite biomass for its co-utilization." The use of
cellulose solvents along with other solvents that can dissolve
different lignocellulose components enables the fractionation of
lignocellulosic components under modest reaction conditions. 8
A few cellulose solvent-based strategies are being developed,
such as concentrated phosphoric acid (85% (w/w)), ionic liquids,
NMMO, NaOH/urea, and DMACc/LICl.
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Table 1. Two main approaches for saccharification of lignocellulose

Approaches Advantages Disadvantages

Acid saccharification (i.e. H,SO4, HNO3 and HCl)
nearly theoretical yield of cellulose
Good for all lignocellulose
elevated temperatures for diluted acid
low temperatures for concentrated acids
Enzymatic cellulose hydrolysis after pretreatment
mild reaction for enzymatic hydrolysis

separation of sugars and acids

acid recovery

modest yield of hemicellulose

high investment cost for corrosion-resistant equipmentacid re-concentration

pretreatment required
high cellulase cost and long reaction time
low or modest yields of cellulose and hemicellulose

CONCENTRATED PHOSPHORIC ACID
AS A CELLULOSE SOLVENT

Cellulose solvent- and organic solvent-based lignocellulose
fractionation (COSLIF) was developed to fractionate lignocellulose
using a combination of concentrated phosphoricacid as a cellulose
solvent and an organic solvent (e.g. acetone or ethanol) under
modest reaction conditions.%® The key ideas of COSLIF are (i)
removal of partial lignin and hemicellulose (i.e. eliminating the
major obstacles to hydrolysis and allowing cellulase to access the
substrate more efficiently),%%° (i) de-crystallization of cellulose
fibers (i.e. providing better cellulose accessibility to cellulase),324°
and (iii) modest reaction conditions (i.e. a decrease in sugar
degradation, less inhibitor formation, lower utility consumption,
and less capital investment).?® Some studies have shown that
concentrated phosphoric acid can completely dissolve cellulose
fibers, resulting in effective disruption of highly ordered hydrogen
bonding network of crystalline cellulose*®’% and drastic increases
in CAC.2844

COSLIF has been demonstrated to efficiently pretreat a wide
range of feedstocks, such as bamboo,>” bermudagrass,”’ common
reed,’®”! corn stover* gamagrass,’? giant reed,’®> elephant
grass,’> sugarcane,’”> hemp hurd,%® Miscanthus,>® poplar,®
switchgrass.*° Different species of untreated biomass feedstocks
show a large variation in their glucan digestibilities at 15 filter
paper units (FPUs) of cellulase per gram of glucan, reflecting their
different recalcitrant degrees (Fig. 6). However, all of the COSLIF-
pretreated biomass feedstocks have similar high digestibilities
(>87%) after 72 h at an enzyme loading of 5 FPUs of cellulase per
gram of glucan (Fig. 6). Therefore, COSLIF could be regarded as
a feedstock-independent pretreatment. Because of the high cost
of current fungal cellulase (i.e. approximately 100 US cents) per
gallon of cellulosic ethanol, 3-5-fold reduction in cellulase use
means up to 80 cents saving per gallon of ethanol produced.””
The COSLIF technology is being tested in a pilot plant by Optafuel
in southern Virginia (USA).

Figure 7 shows a correlation between CAC values of numerous
feedstocks before and after pretreatment and enzymatic
glucan digestibility. Untreated biomass feedstocks with different
carbohydrate and lignin contents®® have low CAC values, resulting
in low enzymatic glucan digestibility (lower than 20%). An
exception is bagasse possibly because it was prepared through
leaching, drying, followed by milling that may disrupt biomass
fiber more efficiently than other untreated feedstocks through
simple particle size reduction. Note: energy-intensive milling is
a very efficient biomass pretreatment for increasing substrate
accessibility but is too costly.3* After pretreatments, such as dilute
acid, SAA, and lime, pretreated biomass samples have enhanced

CAC values, accompanied by enhanced glucan digestibility. This
correlation between CAC and digestibility suggests thatincreasing
substrate accessibility for most pretreatments is important for
achieving enhanced enzymatic glucan digestibility. When CAC
values are higher than a critical value of 8m? g~ biomass, very high
glucan digestibilities were obtained. In these cases, digestibilities
wereindependent of CAC values, suggesting further enhancement
of CAC higher than the critical value was not important. Although
COSLIF very effectively overcomes lignocellulose recalcitrance,
a large volume of cellulose solvents and organic solvents are
employed so that process modification and optimization must be
conducted to make the whole process economically attractive.

IONIC LIQUIDS (ILs) AS CELLULOSE SOLVENTS

ILs are organic salts that are liquids at low temperatures. Many
ILs are liquid even at room temperature. Because of their low
volatility, they are often regarded as a green solvent in organic
synthesis. A combination of various cationsand anions gives agreat
possibility to design ILs meeting different needs. After intensive
study, itis found that ILs having imidazolium or pyridinium cations
paired with CI~,CF3SO37, CF3C0O,7, CH3CO,7, HCOO, R,PO,4 ™ anions
are able to dissolve cellulose fibers through strong hydrogen
bond basicity. The dissolution of lignocellulose in ILs disrupts
the primary bonds among cellulose, hemicellulose and lignin,
yielding more substrate accessibility to hydrolytic enzymes.”* With
suitable choice of anti-solvents (e.g. water, acetone, and alcohol),
up to 80% lignin and hemicellulose can be fractionated.”>~77 A
few ILs that have been employed for biomass pretreatment and
fractionation are shown in Table 2. More details on the use of
ionic liquid in biomass can be found elsewhere.”®~83 Comparative
studies among IL pretreatment, dilute acid, and ammonia fiber
explosion’®84 show that [C,mim][OAc]-pretreated biomass was
hydrolyzed more rapidly and higher glucan digestibility was
obtained.8%82

The choice of ionic liquids imposes a trade-off between biomass
dissolution and biological hydrolysis.2> Most ionic liquids are toxic
to hydrolytic enzymes.85~88 Datta et al.®° found that a commercial
endoglucanase from Tricoderma viridie lost its activity in the
presence of low concentration [C;mim][OAc]. However, complete
removal of ILs is nearly economically infeasible because it requires
the consumption of a large amount of water or anti-solvent,
complete mixing, and complex recycling systems.’® Consequently,
some researchers have developed a more stable cellulase cocktail
in the presence of ILs.%1%?

A small amount of catalyst may be added in IL-based
pretreatment for better fractionation or conversions. Diedericks
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Figure 7. Correlation between CAC and glucan digestibility at 72 h from
various pretreated substrates.

et al. investigated the use of 1-butyl-3-methylimidazolium
methylsulfate ([BMiM]MeSO,4) plus an acid catalyst (i.e. H,SO4)
on sugarcane bagasse.”> The use of an acid catalyst contributed
to a more digestible solid and a higher degree of delignification.
However, the [BMiM]MeSO4-H,S0,4 combination failed to produce
a fully digestible solid and a maximum cellulose digestibility of
77% (w/w) was obtained at the optimum pretreatment condition
of 125°Cfor 2 h. Furthermore, up to half of the lignin content could
be extracted during pretreatment and nearly complete removal of
xylan.

Another biomass fractionation is based on 1-butyl-3-
methylimidazolium chloride followed by precipitation in
acetone/water (9:1, v/v) and extraction with 3% NaOH solution.®*
The ionic liquid was easily recycled after concentration and
treatment with acetonitrile. Bagasse was fractionated using this
method to 36.8% cellulose, 26.0% hemicelluloses, and 10.5% lignin,
accounting for 47.2 and 33.9% of the original polysaccharides and
54.6% of the original lignin, respectively.

Enzymatic hydrolysis of pretreated biomass is preferred at high
solid loading because it decreases capital investment and avoids
energy-intensive sugar re-concentration.” A recent study shows
an increase in biomass loading up to 50 wt% in [Co;mim][OACc]
without compromising the sugar yields and enzymatic hydrolysis
rates.®® Up to four or five time recycled ILs maintain their ability

to dissolve biomass.”” =19 Moreover, recycled ILs containing high
level solubilized lignin can be separated as a raw material in the
production of polymeric materials and liquid hydrocarbons.’?8101

N-METHYL-MORPHOLINE-N-OXIDE (NMMO)

NMMO is used industrially in the Lyocell process to produce
cellulose fibers from dissolving pulp.'®? In it, NMMO dissolves
cellulose fibers due toits high polarity N-O bond, which breaks the
hydrogen bond network of the cellulose and forms new hydrogen
bonds with the solute. Since NMMO is a strong oxidant, an
antioxidant, such as propyl gallate is added in the Lyocell proess to
stabilize the cellulose/NMMO mixture.'%31%4 Since lignin has been
shown to be a radial scavenger and antioxidant, lignocellulose can
be pretreated in NMMO directly. Recent studies have shown the
potential of NMMO for pretreating pure cellulose,'® sugarcane
bagasse,'% spruce,'%” oak,'?’ rice straw,'%® and poplar.'% Shafiei
et al.'% used 85% (w/w) NMMO to pretreat oak and spruce at
90-130°Candambient pressurefor 1-3 h.They found that NMMO-
pretreated oak and spruce yielded enzymatic glucan digestibilities
of 64.6% and 83.5%, respectively.

UREA/NaOH

The NaOH/urea solutions were found to dissolve cellulose
at a subzero temperature for the homogeneous synthesis of
cellulose derivatives.'%6109=111 Racently, the NaOH/urea solution
was applied to pretreat lignocellulose. Spruce pretreated by
NaOH/urea showed slight removal of cellulose, hemicellulose, and
lignin while a significant increase in enzymatic glucan digestibility
was obtained.'®® However, it may be too costly to prepare pre-
chilled NaOH/urea and recycle this solution, especially in the
case of biomass pretreatment that is used to produce low-value
biocommaodities. For example, NaOH-based pulping used to cause
serious water pollution in China, and has been abandoned. Note:
pulp is several times more valuable than ethanol.

N,N-DIMETHYLACETAMIDE (DMAC)/LiCl

DMAC/LICl solution can dissolve cellulose''? because hydrogen
bonding of the hydroxyl protons of cellulose with the chloride ions
allows the solvent to penetrate into cellulose fibers. DMAc/LICI
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Table 2. Selected ionic liquids (RTILs) used in biomass pretreatment

Chemical name Structure of ILs Ref

[ {
1-butyl-3-methylimidazolium chloride N) e 118-123

N F
fl ) Fa,, & wF 2%
1-butyl-3-methylimidazolium hexafluorophosphate ‘{. P !
y y phosp f|‘\F
F

[/ ?
1-butyl-3-methylimidazolium acetate ) )I\ 123

= 98

N
3!
1-benzyl-3-methylimidazolium chloride "[ a

1-butyl-1-methylpyrrolidinium chloride .

N
[ \ i
1-butyl-3-methylimidazolium methylsulfate 7 124

120

\\H+ NOH 9
N,N-dimethylethanolammonium formate N \II 121
| o
o
H OH
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H OH
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Table 2. Conitnued

Chemical name Structure of ILs Ref
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Table 3. Changes in Crl values of COSLIF- and IL-pretreated switchgrass
Crl (%)

XRD ssNMR
Materials Peak height  Peak deconvolution Amorphous subtraction C, peak separation  Amorphous subtraction  Ref.
Intact switchgrass 67.0 59.4 60.9 389 336 40
COSLIF-pretreated swichgrass 32 14.0 ND 17.6 19.1 40
IL-pretreated switchgrass 26 - - - - 76
ND: Not detectable

is suitable for processing and derivatizing pure cellulose.
Recently, Wang et al. conducted a comparative study using
different cellulose solvents — LiOH/urea, LiCI/DMAc, concentrated
phosphoric acid, 1-butyl-3-methylimidazolium chloride, and
NMMO.'%8 Except for the cellulosic sample regenerated from
LiCI/DMACc system, all the other treated samples exhibited lower
cellulose crystallinity and degree of polymerization (DP), and
consequently, exhibited a significant enhancement of enzymatic
hydrolysis kinetic. The regenerated cellulose from concentrated
phosphoric acid almost completely consisted of cellulose I, and
achieved the highest saccharification yield.%

PERSPECTIVES: CHALLENGES
AND OPPORTUNITIES

Cellulose solvent-based lignocellulose fractionation has many
advantages, such as high glucan digestibility at low enzyme
loading, fast hydrolysis rate, and potential revenues from separated
co-products (e.g. hemicellulose, lignin). The ideal cellulose solvent
should have numerous features: (i) dissolving cellulose at modest
temperature (i.e. low energy input and less sugar degradation); (ii)
dissolving wet cellulose (i.e. no biomass drying step required);
(iii) highly recyclable; (iv) nonvolatile or highly volatile for
easy recycling; (v) thermostable and chemostable for nearly an
unlimited number recycling; (vi) nontoxic to the sequential steps
of enzymatic hydrolysis and microbial fermentation; (vii) high
cellulose dissolution capacity (>10% wt. cellulose/vol); and (viii)
fast diffusion rate in solid lignocellulose composite.

Although cellulose solvent-based pretreatment has shown great
promise, several challenges remain because of the production of
low-value biocommodities, such as low ratios of biomass to cellu-
lose solvent, high processing cost for efficient recycling of cellulose
solvents, and high capital investment.’>''3 Therefore, further stud-
ies of cellulose solvent-based pretreatment should focus on:

1 discovering new cellulose solvents meeting the above criteria;

2 decreasing cellulose solvent use per biomass;''*

3 validating cellulose solvent recycling on a relatively large scale
and for a long time;°

4 examining chemostability and thermostability of cellulose
solvents;

5 assessing potential environmental impact of lost cellulose
solvents during the recycling;'>116

6 developing new approaches for cellulose solvent recycling;*®

7 developing enzymes and microorganisms tolerant to the
solvents if they are toxic;’*?'"7 and

8 co-utilizing fractionated lignocellulose components and devel-
oping value-added chemicals from fractionated lignocellulose
components.'67879

The demands for renewable low-cost sugars fractionated from
non-food lignocellulose biomass as a new oil are driving the
development of better ways to cost-effectively overcome biomass
recalcitrance. The use of cellulose solvents, both old and new,
would open up opportunities for emerging biorefineries.
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